ROLAND ACHTZIGER, Freiberg, THOMAS FRIEB, Graz & WOLFGANG RABITSCH, Wien

Die Eignung von Wanzen (Insecta, Heteroptera) als Indikatoren im Naturschutz

Abstract

True bugs (Insecta: Heteroptera) as suitable indicators for nature conservation. True bugs (Insecta, Heteroptera) are rarely used as indicators in conservation biology. They are regarded unsuitable either because of low explanatory power or lack of specialists. The aim of the present paper is - with a focus on Germany, Austria and Switzerland - to reconsider this judgement by taking a closer look upon current taxonomic and faunistic knowledge, availability of standardized collecting techniques and sampling designs, indicatory value, availability of red lists of endangered species and cost-benefit analyses of collecting and determination. Suggestions for standardized collecting techniques are given for different habitat types. The paper emphasizes the high cost-benefit value of Heteroptera due to their high indicatory value at low costs for collecting and determination. Heteroptera are considered to be very profitable and highly suitable indicators for nature conservation.

Key words: Heteroptera, nature conservation, indicators, evaluation, biodiversity.

1 Einleitung

fer) oder in Gewässern leben (z. B. Corixidae, Ruderwanzen). Als hemimetabol Insekten gleich
chen sich die Larven und die Adulten einer Art
hinsichtlich Morphologie, Aussehen und häufig
auch in der Lebensweise.

In den Arbeiten von DECKERT & HOFFMANN
(1993), MELBER (1999a) und im Besonderen
T. detaillierte Ausführungen über wichtige Rah-
menbedingungen bei der Verwendung von Heteropteren als Bioindikatoren gegeben und
das hohe Indikationspotenzial herausgestellt.
Als Weiterführung dieser Arbeiten ist das Ziel
unseres Beitrages, anhand verschiedener Krite-
rrien die Eignung der Wanzen als Indikatoren
für naturschutzfachliche Aussagen und Planun-
gen sowie als Indikatoren für die Biodiversität
herauszuarbeiten. Dabei wird ein Überblick
über die ökologisch-naturschutzfachlich relev-
ante Literatur mit Schwerpunkt im deutsch-
sprachigen Raum (Deutschland, Österreich,
Schweiz) sowie über Erfassungs- und Auswertemetho-
den gegeben und die Einsatzmöglichkeiten
der Wanzen als Indikatoren im Naturschutz
anhand ausgewählter Beispiele verdeutlicht.

2 Eignung von Wanzen als Indikatoren im
Naturschutz

2.1 Indikatoren im Naturschutz

In der Naturschutzbioiogie werden das Vorkom-
men und die Häufigkeit einzelner Arten
bzw. Parameter von Artengemeinschaften wie
die Artenzahl, Diversität oder die Zusammen-
setzung bestimmter ökologischer Gilden (s.
Kap. 3.1) als Bioindikatoren für naturschutz-
fachliche Aussagen herangezogen, etwa für die
Wertigkeit, die Schutzwürdigkeit oder die Ge-
fährdung bzw. Belastung eines Gebiets oder ei-
er konkreten Fläche (z. B. RIECKEN 1992). Bei
der Indikation mittels Tieren stehen dabei be-
sonders solche Ökosystemeigenschaften im Fo-
kus, welche mit anderen Methoden nicht oder
nur mit sehr hohem Aufwand ermittelt werden
können, wie etwa Alter und Reifegrad, Lebens-
raumdynamik oder innere und äußere Biotop-
struktur (RIECKEN 1992). Je nach Funktion und
Ziel der Indikation wird zwischen Zustandsin-
dikatoren (Indikatorarten, Zeigerarten, Biode-
skriptoren), Klassifikationsindikatoren (Cha-
rakterarten, Leitarten), Wert-/Bewertungsindi-
katoren (wertgebende Arten) und Zielindikato-
ren (Zielarten, Arten als Zielindikatoren)
unterschieden (PLACHER et al. 2002). Damit
Arten als Indikatoren z. B. im Sinne von Zeiger-
arten geeignet sind, muss eine hohe Korrelation
zwischen ihrem Auftreten und bestehenden
Umweltfaktoren gegeben sein. Meist handelt es
sich dabei um Arten mit einer geringen ökolo-
gischen Reaktionsbreite bezüglich des zu indi-
zierenden Faktors. Auf der Ebene der lokalen
Artengemeinschaft werden Arten mit ähnlichen
ökologischen Ansprüchen (z. T. zusammenge-
fasst zu Indikatorgilden) auf bestimmte Lebens-
raumveränderungen ähnlich reagieren (Zunah-
me oder Abnahme), so dass sich die Einflüsse in
einer (veränderten) Artenzusammensetzung
widerspiegeln (s. Kap. 4. 2).

2.2 Derzeitige Einschätzung der Eignung der
Wanzen als Indikatoren

In der Literatur zur Auswahl geeigneter In-
dikator- und Descriptorgruppen finden sich
nur wenige Hinweise auf die Möglichkeiten des
Einsatzes von Wanzen im Rahmen natur-
schutzfachlicher Fragestellungen. Entweder
fehlen Nennungen gänzlich oder Heteropteren
werden nur peripher erwähnt (z. B. RIECKEN &
BLAB 1989, RECK 1990, FINCK et al. 1992, MÜHL-
ENBERG 1993, PLACHER et al. 2002). So ordnen
PLACHER et al. (2002) in ihrer Zusammenstel-
lung der Methodenstandards im Naturschutz
die Wanzen hinsichtlich ihrer Eignung für Pla-
nungen anhand von fünf Beurteilungskriterien
und mittels vier Beurteilungsstufen (günstig,
eher günstig, eher ungünstig, ungünstig) wie
folgt ein:
(1) Kenntnisstand: eher günstig
(2) Verfügbarkeit etablierter Erhebungsmetho-
den: eher günstig
(3) Indikatorischer Wert: eher günstig
(4) Vorhandensein von Roten Listen: eher un-
günstig
(5) Bearbeitungsaufwand: eher ungünstig

2.3 Die Eignung der Wanzen als Indikatoren im Naturschutz

2.3.1 Kriterium „Kenntnisstand“

Im Folgenden wird ein Überblick über den derzeitigen Kenntnisstand zu den Aspekten Ökologie und naturschutzrelevante Faktoren, Taxonomie und Verbreitung für die Wanzen gegeben, wobei der Schwerpunkt auf dem deutschsprachigen Raum liegt.

(a) Kenntnisse zum faunistischen Bearbeitungsstand

Die Auffüllung dieser bestehenden Wissenslücken kann grundsätzlich nur durch verstärkte faunistische und ökologische Untersuchungen erfolgen. Für besser untersuchte Gebiete liegt jedoch, je nach Anzahl und Aktivität der Heteropterologen, im Vergleich zu anderen ähnlich umfangreichen Tiergruppen wie Zikaden, Spinnen oder auch Totholzkäfern eine gute regionale Datengrundlage für ökologisch-angewandte Auswertungen vor.

Tabelle 1. Zusammenstellung von Bestimmungswerken für die Wanzen Mitteleuropas

<table>
<thead>
<tr>
<th>Gruppen</th>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Larvenstadien: SOUTHWOOD (1956)</td>
</tr>
<tr>
<td>Corixidae</td>
<td>JANSSON (1986)</td>
</tr>
<tr>
<td>Miridae</td>
<td>WAGNER & WEBER (1964)</td>
</tr>
<tr>
<td>Saldidae, Leptopodida</td>
<td>PÉRICART (1990)</td>
</tr>
<tr>
<td>Tingidae</td>
<td>PÉRICART (1983)</td>
</tr>
<tr>
<td>Nabidae</td>
<td>PÉRICART (1987)</td>
</tr>
<tr>
<td>Anthocoridae, Cimicidae, Microphysidae</td>
<td>PÉRICART (1972)</td>
</tr>
<tr>
<td>Lygaeidae</td>
<td>PÉRICART (1999a, b, c)</td>
</tr>
<tr>
<td>Plesmatidae</td>
<td>HEISS & PÉRICART (1983)</td>
</tr>
<tr>
<td>Betylidae</td>
<td>PÉRICART (1984)</td>
</tr>
<tr>
<td>Coreoidea</td>
<td>MOULET (1995)</td>
</tr>
<tr>
<td>Pentatomoidea part</td>
<td>DERJANSCI & PÉRICART (2005)</td>
</tr>
</tbody>
</table>
(b) Kenntnisse zur Taxonomie und Vorhandensein von Bestimmungsliteratur

Grundsätzlich empfiehlt sich für Anfänger die Kontaktaufnahme zu arrierten Bearbeitern, z. B. über die „Arbeitsgruppe Mitteleuropäischer Heteropterologen“. Die Arbeitsgruppe organisiert jährliche Treffen und gibt mit dem Heteropteron (Hrsg. H.-J. Hoffmann, Universität zu Köln) auch eine periodisch erscheinende Zeitschrift heraus.

(c) Kenntnisstand zur Ökologie und zu naturschutzfachlichen Faktoren

In Tabelle 2 wird eine subjektive und sicherlich nicht vollständige Auswahl der uns verfügbaren ökologisch-faunistischen und angewandt-ökologischen Arbeiten über Wanzen in mitteleuropäischen Biotopen präsentiert, wobei der Schwerpunkt der Zusammenstellung auf dem deutschsprachigen Raum liegt. Viele der berücksichtigten Arbeiten beschäftigen sich auch mit ökologischen bzw. naturschutzfach-
Tabelle 2. Auswahl von naturschutzrelevanten Arbeiten über die Wanzen der wichtigsten Biotypen Mitteleuropas (Biotypen verändert nach RIECKEN et al. 2006)

<table>
<thead>
<tr>
<th>Biototyp</th>
<th>Literaturquellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fließende Gewässer</td>
<td>MESSNER et al. (1982), WEIGELHOFER et al. (1992), HOFFMANN (2004b)</td>
</tr>
<tr>
<td>Biotoptyp</td>
<td>Literaturquellen</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>

lichen Aspekten wie dem Auftreten seltener und gefährdeter Arten, liefern Aussagen zum Einfluss der Bewirtschaftung, den Gefährdungsfaktoren und fallweise auch Hinweise auf optimierende oder erhaltende Maßnahmen.

Tabelle 3 enthält eine Auswahl an ökologischen Studien, die sich mit dem Einfluss ökologischer bzw. naturschutzrelevanter Parameter auf Wanzenarten und deren Zönoten beschäftigt. Weitere Beispiele und Ergebnisse von Studien werden in Kap. 4 erörtert.

2.3.2 Kriterium „Verfügbarkeit etablierter Erhebungsmethoden“

Da die Wanzen eine außerordentliche Vielheit hinsichtlich ihres Vorkommens in unterschiedlichsten Straten (Boden, Moos-, Kraut-, Baumschicht) und Lebensraumtypen (alle limnischen und terrestrischen sowie diverse Mikrohabitate) aufweisen (s. Kap. 3), muss bei qualitativen Erfassungen oder Kartierungen der in einem Gebiet vorkommenden Wanzenarten immer eine Kombination an Erfassungsmethoden angewandt werden. Dieser Methodenmix besteht zumeist aus Käferfänger (Krautschicht), Klopfmethode (Gebüsch- und untere Baumschicht) sowie gezielt Handfang an potenziell geeigneten Stellen (unter Rinde, unter Steinen, im Moos) oder bestimmten Pflanzenarten. Hinzu kommen je nach Frage-
<table>
<thead>
<tr>
<th>Untersuchungsparameter</th>
<th>Literaturquellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habitatparameter</td>
<td></td>
</tr>
<tr>
<td>Nutzungsparameter</td>
<td></td>
</tr>
<tr>
<td>Untersuchungsparameter</td>
<td>Literaturquellen</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Mulchen</td>
<td>BORNHOLDT (1991), BORNHOLDT et al. (1997), BORNHOLDT et al. (2001)</td>
</tr>
<tr>
<td>Gentechnisch veränderte Organismen (GMOs), Biotopentwicklung</td>
<td>ZWahlen et al. (2000), PONSARD et al. (2002), GRÜNBACHER & KROMP (2006)</td>
</tr>
</tbody>
</table>

stellung und Lebensraumtyp weitere entomologische Standardfreilandmethoden, die jeweils einen spezifischen Teil der Wanzenzönose erfassen: Lichtfallen, Malaise-Fallen, Ekdektorfallen, Bodensieb, Bodenfallen, Saugfallen, Wassercheser u. ä. (Tabelle 4).

Für (semi-)quantitative Erfassung der Wanzengemeinschaften einschließlich der Individuenzahlen der einzelnen Arten für vergleichende Analysen und statistische Auswertungen sollte der Probeumfang standardisiert und zumindest innerhalb der Studie einheitlich sein. Hierzu sollte die Schlaganzahl mit dem Kescher in einem bestimmten Areal limitiert werden, der Zeitraum für die Handsuche festgelegt und bei der Verwendung von Fallen die Fallenanzahl sowie bei Saugfängen die Anzahl an Saugpunkten normiert werden.

In Tabelle 5 werden Empfehlungen zu Sammelmethoden und Umfang sowie Abschätzungen des zu veranschlagenden Zeitaufwands zur Beurteilung von Heteropterenzönosen von Einzelflächen im Rahmen naturschutzfachlicher Fragestellungen in verschiedenen Lebensraumtypen gegeben. Es handelt sich dabei um Richtwerte, die sich auf kleinfächige Standorte (200 bis 500 m²) mit klar abgrenzbaren Vegetationseinheiten beziehen (bei linearen Lebensraumtypen 50 m Länge) und daher je nach Fragestellung und Lebensraumausstattung modifiziert werden müssen. Dies ist etwa bei vergleichenden quantitativen Studien mit einer Vielzahl an Untersuchungsflächen der Fall; hier müssen die Anzahl an Begehungen und der Beprobungsaufwand an die Kapazitäten angepasst werden (s. u.). Geeignet sind die angegebenen Methoden insbesondere für Umweltverträglichkeitsstudien, Pflege- und Entwicklungsplanungen, Beweissicherung, Renaturierungsplanung, Monitoring und Erfolgskontrolle. Detaillierte Hinweise zum Erhebungsaufwand von Wanzen bezogen auf unterschiedliche Planungs- und Maßstabsebenen finden sich bei ZIMMERMANN & MORSEL (2001).

Bei der Untersuchung von Offenlandstandorten hat sich etwa eine semiquantitative Erfassung mit 60 bis 100 Kescherschlägen für Arten der Gras- und Krautschicht und eine ca. 30minütige Handsuche an bestimmten Nahrungsplänen und Kleinstlebensräumen (z. B. Rinde,
Totholz, unter Steinen, Feuchtstellen, Moospolster) nach Lebensraumspezialisten in Kombination mit Bodenfallen zur Erfassung der endo- und epigäisch lebenden Wanzenarten bewährt (Tabelle 5). Alternativ kann ein Boden-
sauger (D-Vac, umgebauter Laubsauger) quantitative Daten liefern (vgl. Stewart 2002), wobei der Erfassungsgrad nach Erfahrungen der Autoren bei Wanzen im Vergleich zu Zikaden geringer ausfällt. Für verbuschte oder baumbestockte Lebensräume empfiehlt sich der normierte Einsatz eines Klopfschirms zur Erhe-
bung der arborikolen Wanzengemeinschaft (Stechmann et al. 1981). Aufgrund der hohen Anzahl mono- und oligophager Arten sind even-
tuell eine nach Nahrungspflanzen differenzierte Beprobung und eine entsprechende Wirtspflan-
zenkenntnis der Bearbeiter notwendig.

Bei der Erfassung von Wanzen sind somit alle reproduzierbaren Fangmethoden, mit den für Wirbellose allgemein geltenden Einschränkungen (u. a. kurze Aktivitäts- und Imaginal-
zeit, sehr geringe Ansprüche an die Flächengröße, geringe Körpergrößen von nur wenigen Millimetern) anwendbar. Freilandbeobachtungen von Wanzen konzentrieren sich auf den Zeit-
raum Mai bis Anfang Oktober. Die höchste Artenvielfalt wird in den Monaten Juni bis August

Tabelle 4. Fangmethoden in Bezug auf Straten und besondere Habitate bzw. für spezielle, mit gängigen Fangmethoden schwer nachweisbare Taxa

<table>
<thead>
<tr>
<th>Stratum / Habitate</th>
<th>Methoden</th>
<th>Taxa</th>
</tr>
</thead>
</table>
| Wasserkörper | Wasserkescher, Schöpfefi-

mer, (Unterwasser) Lichtfallen, Handfang, Trichterfallen, Reusenfallen | Corixidae, Nepidae, Naucoridae, Aphelocheiridae, Noto-
nectidae, Pleidae |
Wasseroberfläche	Wasserkescher, Handfang, Schöpfefierner	Gerridae, Veliidae, Mesoveliidae, Hydrometridae
Uferzonen	Handfang, (Bodenfallen)	v. a. Saldidae, Dipsocoridae
Boden- und Streuschicht	Handfang, Bodenfallen, Bodensieb, Ausschütteln über Schale	v. a. Tingidae, Cydnidae, Lygaeidae, Pentatomidae
Moos	Handfang, Bodensieb, Ausschütteln über Schale	v. a. Hebridae, Tingidae, Ceratocombidae, Dipsocoridae
Borke, Rindenspalten	Abkehren, Handfang, Baumbercherfallen, Stammeklektorfallen, Wellpappmanschette	v. a. Aradidae, Anthocoridae, Reduviidae (*Empicoris* spp.), Miridae, Microphysidae
Baummulm, Altwras, Laub	Handfang, Bodensieb, Ausschütteln über Schale	diverse Familien
Kronenraum	Lufteklektorfallen, Fensterfallen, Malaisefallen	diverse Familien, v. a. Miridae
Vogelnester, Fledermausquartiere,	Handfang/-absuche, Absuche des Quartierumfelds	Cimicidae
menschliche Behausungen		
Biotopkomplexe	Lichtfallen	v. a. Nepomorpha, Miridae

2.3.3 Kriterium „Indikatorischer Wert“

Der indikatorische Wert einzelner Wanzenarten und in Folge der Wanzenzönose in einem Gebiet ergeben sich aus den Kenntnissen zur Ökologie, insbesondere zur Biotop-, Habitat- und Nährpflanzenbindung der einzelnen Arten und der sie beeinflussenden Faktoren, die in Kap. 2.3.1 zusammengestellt wurden. Zwar sind noch lange nicht für alle Arten die ökologisch relevanten Faktoren für die Populationsentwicklung bekannt, doch können insbesondere anhand der zumeist bekannten Biotopbindung der Arten ausreichende Aussagen über Zustand und Wertigkeit von Lebensräumen getroffen werden (vgl. Tabelle 2, 3; Kap. 4). In Summe werden viele Wanzen hinsichtlich ihres Indikatorwerts und ihrer Anzahl gut untersucht. Sie liefern eine hohe Aussagekraft über verschiedene Standortfaktoren wie z. B. Mikroklima, Vegetationsstruktur und -zusammensetzung, Nutzungsintensität und Schadstoffbelastung. Dies gilt gleichermaßen für Land- und Wasserwanzen.

Tabelle 5. Vorschläge zum Freiland-Untersuchungsdesign zur Erfassung von Wanzen in verschiedenen Lebensraumtypen bezogen auf die drei Auswertungsebenen.

<table>
<thead>
<tr>
<th>Lebensraumtyp</th>
<th>Untersuchung</th>
<th>Methoden & Umfang</th>
<th>Zeitauwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offenes Kulturland: Wirtschaftsgrünland, offene Brachen und Ruderalflächen, Niedermoorwiesen (Äcker) Wälder - Unterwuchs (ohne Gehölzsicht)</td>
<td>Qual./AL</td>
<td>Keschersfang (100 Kschl.) Handfang (30 min)</td>
<td>3 Beg. à 1 h = 3 h</td>
</tr>
<tr>
<td></td>
<td>Squant./ ÖF</td>
<td>Keschersfang (100 Kschl.) Handfang (30 min; kann bei Einsatz von Bodenfallen entfallen) evtl. Bodenfallen (5 Stück)</td>
<td>5 Beg. à 1,5 h = 7,5 h</td>
</tr>
<tr>
<td></td>
<td>Quant./stat.</td>
<td>Keschersfang (100 Kschl.) Bodenfallen (5 Stück) ODER Saugfang (100 Saugpunkte)</td>
<td>8 Beg. à 1 h = 8 h</td>
</tr>
<tr>
<td>Strukturreiches, halboffenes Kulturland: Streuobstbestände, Hutweiden Almen, verbuschte Magerwiesen, Heiden, mittlere bis ältere Grünland-Sukzessionsstadien</td>
<td>Qual./AL</td>
<td>Keschersfang (100 Kschl.) Handfang (30 min) Klopfmethode (dominante Gehölzarten)</td>
<td>3 Beg. à 1,5 h = 4,5 h</td>
</tr>
<tr>
<td></td>
<td>Squant./ ÖF</td>
<td>Keschersfang (100 Kschl.) Handfang (30 min; kann bei Einsatz von Bodenfallen entfallen) evtl. Bodenfallen (5 Stück) Klopfmethode (10 Klopfpositionen pro Gehölzart)</td>
<td>5 Beg. à 2 h = 10 h</td>
</tr>
<tr>
<td></td>
<td>Quant./stat.</td>
<td>Keschersfang (100 Kschl.) Bodenfallen (5 Stück) ODER Keschersfang (100 Kschl.) Saugfang (100 Saugpunkte) Klopfmethode (2 Proben à 5 Klopfpositionen pro Gehölzart)</td>
<td>8 Beg. à 1,5 h = 12 h</td>
</tr>
<tr>
<td>Hochmoore, Röhrichte</td>
<td>Qual./AL</td>
<td>Keschersfang (100 Kschl.) Handfang (30 min)</td>
<td>3 Beg. à 1 h = 3 h</td>
</tr>
<tr>
<td></td>
<td>Squant./ ÖF</td>
<td>Keschersfang (100 Kschl.) Handfang (30 Minuten; kann bei Einsatz von Bodenfallen entfallen) evtl. Bodenfallen (5 Stück) Aussieben von Moos (5 Proben)</td>
<td>5 Beg. à 1,5 h = 7,5 h</td>
</tr>
<tr>
<td></td>
<td>Quant./stat.</td>
<td>Keschersfang (100 Kschl.) Bodenfallen (5 Stück) ODER Keschersfang (100 Kschl.) Saugfang (100 Saugpunkte)</td>
<td>6 Beg. à 1 h = 6 h</td>
</tr>
<tr>
<td>Lebensraumtyp</td>
<td>Untersuchung</td>
<td>Methoden & Umfang</td>
<td>Zeitaufwand</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Saumbiotope (Waldränder, Hecken, Feldgehölze, Ufergehölze) – ohne Boden-, Streu- und Gras-Krautschicht</td>
<td>Qual./AL</td>
<td>Klopfmethode (dominante Gehölzarten)</td>
<td>3 Beg. à 1 h = 3 h</td>
</tr>
<tr>
<td></td>
<td>Squant./ÖF</td>
<td>Klopfmethode (10 Kloppositionen je Gehölzart)</td>
<td>5 Beg. à 1 h = 5 h</td>
</tr>
<tr>
<td></td>
<td>Quant./stat.</td>
<td>Klopfmethode (2 Proben à 5 Kloppositionen pro Gehölzart)</td>
<td>5 Beg. à 1 h = 5 h</td>
</tr>
<tr>
<td>Wälder – Gehölzschicht, Kronenregion</td>
<td>Qual./AL</td>
<td>Klopfmethode (dominante Gehölzarten) ODER Streifnetz mit Teleskopstiel</td>
<td>3 Beg. à 1,5 h = 4,5 h</td>
</tr>
<tr>
<td></td>
<td>Squant./ÖF</td>
<td>normierter Einsatz von Ast-, Stamm- und Luftpulektoren</td>
<td>5 Beg. à 1 h = 5 h</td>
</tr>
<tr>
<td></td>
<td>Quant./stat.</td>
<td>normierter Einsatz von Ast-, Stamm- und Luftpulektoren</td>
<td>5 Beg. à 1 h = 5 h</td>
</tr>
<tr>
<td>Gewässer – stehend</td>
<td>Qual./AL</td>
<td>Wasserkiescher, Schöpfeliner, Handfang (1 h)</td>
<td>3 Beg. à 1 h = 3 h</td>
</tr>
<tr>
<td></td>
<td>Squant./ÖF</td>
<td>Wasserkiescher (50 Kschl. zu 1 m)</td>
<td>5 Beg. à 1 h = 5 h</td>
</tr>
<tr>
<td></td>
<td>Quant./stat.</td>
<td>Flaschenreusen, Trichterfallen, Unterwasser-Lichtfallen</td>
<td>5 Beg. à 1 h = 5 h</td>
</tr>
<tr>
<td>Gewässer – fließend</td>
<td>Qual./AL</td>
<td>Wasserkiescher, Schöpfeliner, Handfang</td>
<td>3 Beg. à 1 h = 3 h</td>
</tr>
<tr>
<td></td>
<td>Squant./ÖF</td>
<td>Wasserkiescher (50 Kschl. zu 1 m)</td>
<td>5 Beg. à 1 h = 5 h</td>
</tr>
<tr>
<td></td>
<td>Quant./stat.</td>
<td>Flaschenreusen, Trichterfallen</td>
<td>5 Beg. à 1 h = 5 h</td>
</tr>
<tr>
<td>(vegetationsarme) Uferzonen, Felsstandorte, Schutthalden</td>
<td>Qual./AL</td>
<td>Handfang</td>
<td>3 Beg. à 1 h = 3 h</td>
</tr>
<tr>
<td></td>
<td>Squant./ÖF</td>
<td>Bodenfallen (10 Stück)</td>
<td>6 Beg. à 0,5 h</td>
</tr>
<tr>
<td></td>
<td>Quant./stat.</td>
<td>Bodenfaller (10 Stück)</td>
<td>8 Beg. à 0,5 h</td>
</tr>
</tbody>
</table>

zönität (Larven und Imagines leben im selben Biototyp) unterstützt.

Eine Einschränkung in der Verwendung als Zeigergruppe bezogen auf bestimmte Biototypen ist bei Wanzen an sich nicht notwendig; eventuell sind bestimmte hochalpine Lagen (schattige und alpine Felsstandorte, alpine Schutthalden und schattig-kühle, unterwuchslöse Waldgebiete) zu nennen. Aber selbst in subalpinen Lebensräumen in Höhen zwischen 1600 und 1900 m Seehöhe wie Zwergrastheiden, Almweiden und alpinen Matten konnten gute Ergebnisse in der Flächenbeschreibung und -bewertung sowie im Erfassen von Eingriffssituationen anhand von Heteropteren erzielt werden (FRIEß unpubl.).

2.3.4 Kriterium „Vorhandensein von Roten Listen“

Rote Listen gefährdeter Tier- und Pflanzenarten sind wichtige Instrumente des Naturschutzes, insbesondere für die Beurteilung von Lebensräumen und deren Gefährdung bzw. Schutzwürdigkeit (z. B. GRUTTKE 2005). Rote Listen für Wanzen haben im deutschsprachigen Raum eine schon mehrere Jahrzehnte andauernde Geschichte (z. B. REIGER 1979), mit teils bereits überarbeiteten Listen in einigen deutschen Bundesländern (z. B. Bayern, BRAÜ & SCHWIBINGER 2004). Wie aus der Zusammenstellung der aktuellen Roten Listen im Bezugsraum in Tabelle 6 hervorgeht, liegen Rote Listen für die Wanzen derzeit noch nicht flächen-
deckend vor. In einigen Ländern sind die Listen zudem bereits seit längerem nicht mehr aktualisiert worden. In Deutschland wird derzeit an einer Aktualisierung der bundesweiten Roten Liste der Wanzen gearbeitet (SIMON et al., in Vorb.), in Österreich werden erste Länderlisten geschaffen und für die Wanzen der Schweiz existiert noch keine Rote Liste.

2.3.5 Kriterium „Bearbeitungsaufwand“

<table>
<thead>
<tr>
<th>Land</th>
<th>Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
<td></td>
</tr>
<tr>
<td>- Baden-Württemberg</td>
<td>GÜNTHER et al. (1998), SIMON et al. (in Vorb.)</td>
</tr>
<tr>
<td>- Bayern</td>
<td>RIEGER (1986)</td>
</tr>
<tr>
<td>- Wasseronenwanzen</td>
<td>ACHTZIGER et al. (2003)</td>
</tr>
<tr>
<td>- Brandenburg</td>
<td>DECKERT & WINKELMANN (2005)</td>
</tr>
<tr>
<td>- Hessen</td>
<td>DECKERT & GÖLLNER-SCHEIDING (1992)</td>
</tr>
<tr>
<td>- Landwanzen</td>
<td>BRAASCH & SCHÖNFELD (1992)</td>
</tr>
<tr>
<td>- Wasserwanzen</td>
<td>DOROW et al. (2003)</td>
</tr>
<tr>
<td>- Niedersachsen/Bremen</td>
<td>ZIMMERMANN (1996)</td>
</tr>
<tr>
<td>- Sachsen-Anhalt</td>
<td>MELBER (1999b)</td>
</tr>
<tr>
<td>- Thüringen</td>
<td>BARTELS et al. (2004)</td>
</tr>
<tr>
<td></td>
<td>LICHTER & SANDER (2001)</td>
</tr>
<tr>
<td>Österreich</td>
<td></td>
</tr>
<tr>
<td>- Kärnten</td>
<td>FRIESS & RABITSCH (in Vorb.)</td>
</tr>
<tr>
<td>- Burgenland</td>
<td>RABITSCH (in Vorb.)</td>
</tr>
<tr>
<td>- Niederösterreich</td>
<td>RABITSCH (2007a)</td>
</tr>
<tr>
<td>Liechtenstein</td>
<td>BERNHARDT (1995)</td>
</tr>
</tbody>
</table>

Tabelle 6. Zusammenstellung der aktuellen Roten Listen zu Wanzen in Mitteleuropa
pflanzen, den Pflanzenwespen und den Stech immen an und werden aus Sicht einer „Ertrags optimierung“ von Obrist & Duelli (1998) als Indikatorgruppe insbesondere für Inventuren der lokalen organismischen Biodiversität empfohlen. Gerade auch was die notwendige Arbeitsintensität im Freiland, kombiniert mit dem Aufwand für die Determination betrifft, bestäti gen die subjektiven Erfahrungen der Verfasser im Rahmen vieler Projekte diese Ergebnisse. Bei geeigneter Methodenwahl ist die möglichst vollständige Erfassung lokaler Wanzenzönosen im Vergleich zu anderen Wirbellosen-Tiergruppen mit geringerem zeitlichen Aufwand möglich. Hauptgrund hierfür ist der an vielen Standorten hohe Artenreichtum bei geringen Individuendichten, was zwangsläufig bei der Auswertung automatischer Fallenfänge (Bodenfallen, Saugfallen) von Vorteil ist.

Tabelle 7. Zahl der festgestellten Individuen und Arten in einem 5 km langen Fallentransakt (eine Fensterfalle, drei Bodenfallen, eine Gelbschale pro Standort) von einem isolierten Feuchtgebiet durch intensiv bewirtschaftetes Acker- und Wiesenland zu einem isolierten Halbtrockenrasen im Laufe eines Jahres (aus Duelli & Obrist 2003b)

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Individuen</th>
<th>Arten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zweiflügler</td>
<td>68392</td>
<td>636</td>
</tr>
<tr>
<td>Käfer</td>
<td>67835</td>
<td>829</td>
</tr>
<tr>
<td>Spinnentiere</td>
<td>49099</td>
<td>168</td>
</tr>
<tr>
<td>Hautflügler</td>
<td>22619</td>
<td>344</td>
</tr>
<tr>
<td>Asseln</td>
<td>5487</td>
<td>12</td>
</tr>
<tr>
<td>Fransenflügler</td>
<td>3660</td>
<td>32</td>
</tr>
<tr>
<td>Wanzen</td>
<td>2133</td>
<td>119</td>
</tr>
<tr>
<td>Doppelfüßer</td>
<td>1636</td>
<td>18</td>
</tr>
<tr>
<td>Heuschrecken</td>
<td>1242</td>
<td>19</td>
</tr>
<tr>
<td>Netzfötlerartige</td>
<td>452</td>
<td>21</td>
</tr>
<tr>
<td>Staubläuse</td>
<td>257</td>
<td>31</td>
</tr>
</tbody>
</table>

2.3.6 Restimm zur Eignung der Wanzen als Indikatoren

1. Kenntnisstand: eher günstig
2. Verfügbarkeit etablierter Erhebungsmethoden: günstig
3. Indikatorischer Wert: günstig
4. Vorhandensein von Roten Listen: eher ungünstig
5. Bearbeitungsaufwand: günstig

In Summe gesehen kann man damit die Eignung der Heteropteren als Indikatoren für planerische Fragestellungen als günstig bis eher günstig ansehen. Defizite bestehen hinsichtlich der Verfügbarkeit regionaler und überregionaler Roten Listen und des unterschiedlich weit fortgeschrittenen faunistischen Kenntnisstandes in Teilregionen Mitteleuropas.

3 Spezielle Eignung der Wanzen zur Abschätzung der organismischen Biodiversität

3.1 Grundlagen und Kriterien für die Eignung

Die Erhaltung der biologischen Vielfalt ist

– möglichst viele unterschiedliche Habitatbindungen (Spezialisten wie Generalisten) und ökologische Anspruchstypen aufweisen (ökologische Diversität),

– möglichst viele Ernährungstypen (Nahrungspflanzenbindungen, Ernährungsweisen wie phytophag, räuberisch, parasitisch) aufweisen und damit an verschiedenen Stellen in den Nahrungsbeziehungen der Biozönosen vorkommen,

– ein möglichst vielfältiges und breites Spektrum bionomischer Merkmale (z. B. Körperformen, Lebenszyklen) aufweisen.

Wie in den folgenden Kapiteln überblicksweise gezeigt wird, erfüllen die Heteropteren diese Kriterien sehr gut. Wie Duelli & Obst (1998) in einer umfangreichen Studie unterschiedlich genutzter Flächen in der Schweiz zeigen konnten, korrelierten die Artenzahlen der Wanzen hoch signifikant und sehr eng ($r^2 =$

Tabelle 8. Beispiel für eine Liste von charakteristischen Wanzenarten für zentralalpine Almweiden und Weidesukzessionsstadien. Flächen 1a-c = Almweiden (dunkelgrau), Flächen 2a-c = verbuschte Almweiden (mittelgrau), Flächen 3a-c = ehemalige Almweiden, jetzt hochmontaner Fichtenwald (hellgrau). Angabe der Individuenzahlen nach semiquantitativer Beprobung mittels Streifnetz und Bodenfallen (Fries, unpubl.).

<table>
<thead>
<tr>
<th>Taxa</th>
<th>1a</th>
<th>1b</th>
<th>1c</th>
<th>2a</th>
<th>2b</th>
<th>2c</th>
<th>3a</th>
<th>3b</th>
<th>3c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berytinus minor (Herrich-Schäffer, 1835)</td>
<td>6</td>
<td></td>
<td></td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nithecus jacobaeae (Schilling, 1829)</td>
<td>10</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hallicus apterus (Linnaeus, 1758)</td>
<td>1</td>
<td>5</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Notostira erratica (Linnaeus, 1758)</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calocoris affinis (Herrich-Schäffer, 1835)</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eurydema rotundicollis (Dohrn, 1860)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trapezonotus desertus Seidensticker, 1851</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plagiognathus arbustorum (Fabricius, 1794)</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mecomma ambulans (Fallén, 1807)</td>
<td>13</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camptozygus pumilio Reuter, 1902</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closterotomus biclavatus (Herrich-Schäffer, 1835)</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenoda alogiensis Schmidt, 1934</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psallus luridus Reuter, 1878</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horvathia lineolata (A. Costa, 1862)</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psallus vitatus (Fieber, 1861)</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atractotomus magnicornis (Fallén, 1807)</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phytocoris cf. pini Kirschbaum, 1856</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acompocoris montanus Wagner, 1955</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
0,927) mit den Gesamartenzahlen über zahlreiche Artengruppen inkl. Pflanzen, obwohl sie nur 5,3 % der Arten und nur 1,1 % der Individuen stellten (siehe auch OBRIStein & DUDELL 1998). Dies ist auch der Fall für die Wanzen in den Baumkronen von Apfelbäumen in Streuobstbeständen in Mittelfranken (ACHTZIGER et al. 2001 unpubl.): Die Wanzenartenzahl auf 120 Apfelbäumen korrelierte hochsignifikant ($r^2 = 0,63$, $p < 0,001$, $n = 120$; zum Vergleich: Zikaden $r^2 = 0,58$, xylöbionte Käfer $r^2 = 0,54$) mit der festgestellten Gesamtbaumfauna (Wanzen, Zikaden, Blattläuse, Blattflöhe, Ameisen, xylöbionte Käfer); gleiches gilt auf der Ebene von 12 Streuobstbeständen ($r^2 = 0,81$, $p < 0,001$, $n = 12$; zum Vergleich: Zikaden $r^2 = 0,64$; xylöbionte Käfer $r^2 = 0,88$). Aufgrund der hohen ökologischen Diversität der Wanzen bzgl. Lebensraumpräsenz und Lebensweise (s. u.) liegt es jedoch nahe, dass eine hohe Wanzendiversität auch eine hohe Gesamartendiversität und darüber hinaus eine hohe Lebensraumvielfalt und Strukturdiversität anzeigt. Dabei haben die Wanzen den Vorteil, dass sie im Unterschied zu ebenfalls ökologisch sehr diversen Gruppen mit 1100 mitteleuropäischen Arten noch eine erschaubare und bewältigbare Artenzahl haben (zum Vergleich: Käfer 8000 Arten, Hautflügler 12 000 Arten, Zweiflügler über 10 000 Arten) und dennoch in den meisten Biotoptypen mit für statistische Aussagen ausreichenden Artenzahlen vertreten sind (Beispiele in Tabelle 3 und in Kap. 4). Auf das aus Sicht des Bearbeitungs- aufwands günstige Artenzahl-Individuenzahl-Verhältnis der Wanzen wurde bereits in Kap. 2.3.5. hingewiesen.

3.2 Artenvielfalt und Vielfalt der Lebensraumpräsenz

In Mitteleuropa leben knapp 1100 Wanzenarten (GÜNTHER & SCHUSTER 2000), wobei die Diversität generell von Norden nach Süden zunimmt und im Alpengebiet von den Tief- und Randlagen in die Hoch- und Zentrallagen des Gebirges abnimmt. Oberhalb der geschlossenen Waldstufe, in der Subalpinstufe und darüber, leben nur mehr wenige Dutzend hoch spezialisierte Wanzenarten (z. B. FRANZ 1943, 1946, JA-

Abb. 1. Stratenzugehörigkeit der Wanzen in Mitteleuropa (nach Daten von RABITSCH, in Vorb.)

3.3 Diversität in der Habitatbindung

3.4 Diversität in der Ernährungsweise und der Stellung im Nahrungssystem
Wie in kaum einer anderen Wirbellosen-Gruppe ist die Ernährungsweise innerhalb der Wanzen äußerst vielfältig (z. B. DOLLING 1991). Die meisten Arten (ca. 60 %) sind phytophage Pflanzensaftsauger, die besonders stickstoffrei-
che Pflanzengewebe bevorzugen sowie carpophag (an Samen saugend) und fructiphag (an Früchten saugend) sind. Etwa 20 % der Arten sind carnivor (zoophag) und rund 15 % zoo-
phytophag, das bedeutet sie ernähren sich so-
wohl von tierischer (meist andere Insekten oder
Insektenbienen) als auch von pflanzlicher Kost
(z. B. viele Miridae und Pentatomidae). Einige
Wanzenarten sind mycetophag (Aradidae), hä-
matophag (Cimicidae) oder detritophag (Cori-
xidae part.).

In Bezug auf das Nährpflanzenpektrum gibt es neben einigen streng monophagen viele
oligophag und polyphage Wanzenarten. Trophisch spezialisierte phytotphage Wanzen zei-
gen in Summe eine überwiegend an Kräuter
und bestimmte Strauch- und Baumarten ge-
bundene Ernährungsweise; Gräser spielen - im
Gegensatz zu den Zikaden - eine untergeordne-
te Rolle. So sind über 50 % der Wanzenarten von Krautsäumen und Feldfrüchten an Kräuter
gebunden, nur 20 % an Gräser (zum Vergleich:
Zikaden 65 % Gräser, 20 % Kräuter) (ACHTZI-
GER 1991). In der Gehölzschicht von Hecken
und Waldrändern ist der Anteil an zoophagen
oder zoophytophagen Wanzenarten mit ca.
60 % deutlich höher als in der Krautschicht mit
c. 20 % (ACHTZGER 1991). Zoophag Arten
zeigen teilweise eine Beutetierpräferenz, wobei
einige Blattlaus-, Blattfloh- oder Spinnilben-
jäger (Anthocoridae, Miridae) auch gezielt in
der biologischen Kontrolle von Schädlingen
zum Einsatz kommen (z. B. NOVAK & ACHTZI-
GER 1995, COLL & RUBERSON 1998, SCHAFFER &
PANIZZI 2000). Aufgrund dieser unterschiedli-
chen Ernährungsweisen nehmen die einzelnen
Wanzenarten verschiedene Stellungen und
Funktionen im Nahrungsnetz von Ökosyste-
men ein. Damit ist die Bedeutung der Wanzen
in den Nahrungsketten tierischer und terres-
trischer Ökosysteme aufgrund der arten- und
dividuenreichen Präsenz in vielen Biotoptypen
sowie in fast allen trophischen Ebenen
hoch einzuschätzen.

3.5 Diversität in Körpergröße und Lebensweise
Die gezeigte hohe ökologische Diversität der
Wanzen bezüglich Lebensraumpräferenz und
Ernährungsweise geht mit einer enormen Viel-
fält der Lebensweisen und Lebensformtypen ein-

her (z. B. ACHTZGER 1995). So variiert allein die
Körpergröße (gemessen als Körperlänge)
innerhalb der mitteleuropäischen Wanzenfa-
una zwischen 1,2 mm bei den kleinsten Arten
(Microphysidae, Ceratocombidae) und etwa 16
mm (Reduviidae, Acanthosomatidae). Die bei-
heimischen Vertreter der Nepidae sind mit
20 mm (Nepa cinerea) und 30 bis 35 mm (Ra-
ratra linearis) (ohne Atemrohr) die größten
Wanzen in Mitteleuropa. Die Körpergröße ist
in vielen Fällen wiederum mit anderen biono-
mischen Merkmalen wie der Ernährungsweise
oder dem Lebenszyklus, zum Teil auch mit der
Populationsdynamik und der Abundanz ver-
knüpft (z. B. BROWN 1982, ACHTZGER 1997). Da
die Vielfalt dieser Lebensformtypen in einem
Ökosystem auch als Ausdruck für die gesamte
Biodiversität angesehen werden kann (HENGE-
VELD 1994), haben Wanzen auch aufgrund ihrer
hohen Vielfalt an Lebensweisen ein hohes Indi-
kationspotenzial. Als eine in dieser Hinsicht er-
folgversprechende Möglichkeit ist daher die
Körpergrößenverteilung der Wanzengemein-
enschaft in einem Gebiet oder einer Untersu-
chungsfläche anzusehen. Allerdings gibt es
noch keine Beispiele für deren Verwendung für
naturschutzfachliche Aussagen, hier besteht
demnach noch Forschungsbedarf (z. B. BRÄND-
LE et al. 2000).

4 Beispiele für den Einsatz von Wanzen bei
naturschutzfachlichen Fragestellungen

Im Folgenden werden ausgewählte Beispiele
für die Verwendung von Wanzen(zöno- n) für
naturschutzfachliche Fragestellungen vorge-
stellt, gegliedert nach möglichen zu analysieren-
den Parametern. Der Schwerpunkt der Beispi-
le liegt auf Untersuchungen der Verfasser, wei-
tere Beispiele sind in den Arbeiten in Tabelle 2
und 3 zu finden.

4.1 Parameter „Artenzahl“
Vergleich unterschiedlicher Flächen
(räumlicher Vergleich): Die lokale Wanzenar-
tenzahl ist ein wichtiger Kennwert in der Flä-
enbewertung, die von der Struktur- und Ve-
getationsheterogenität sowie (damit meist in
Korrelation) von der Nutzungsintensität ab-
hängt und – wie in Kap. 3.1 gezeigt – mit be-

4.2 Parameter „Artenzusammensetzung und Anteil ökologischer Gruppen“

![Diagramm](image-url)

über die Arten- und Individuenanteile unterschiedlicher Gilden dargestellt und bewertet werden (vgl. Abb. 2).

4.3 Vollständigkeit des Artenbestands und potenzieller ökologischer Gilden

Abb. 3. (a) Abnahme der Gesamttartenzahl und (b) Zunahme der Rote-Liste-Arten am Beispiel unterschiedlicher Standorte in den (ehemaligen) Flugsanddünen von Oberweiden im niederösterreichischen Marchfeld (aus RABITSCH 2002a)
Abb. 4. *Amblytylus albicus* (Hahn, 1834) (Miridae) ist eine Charakterart des Corynephoretums und an Sand-Trockenrasenstandorte gebunden (Foto: W. Rabitsch).

Abb. 5. *Macrodera microptera* (Curtis, 1836) (Lygaeidae) ist eine Charakterart des Callunetums und an Heide- und Moorstandorte gebunden (Foto: W. Rabitsch).
4.4 Anzahl seltener, stenotoper und gefährdeter Arten

4.5 Charakterarten für bestimmte Biototypen bzw. Biozönosen

5 Folgerungen und Ausblick

Die nachfolgende Übersicht fasst die oben erläuterten Vor- und Nachteile bei der Verwendung von Wanzen als Indikatorgruppe im Naturschutz zusammen:

Argumente für den Einsatz von Wanzen als Indikatoren:

- Alle terrestrischen, aquatischen und semiaquatischen Lebensräume werden besiedelt; hohe Lebensraumpräsenz
- Mannigfaltige ökologische Ansprüche an biotische und abiotischen Faktoren; hoher Anteil stenotoper Arten in natürlichen und naturnahen Lebensräumen
- Sehr günstiges Verhältnis der vorhandenen ökologischen Bandbreite zur Gesamtartenzahl
- Präsenz in unterschiedlichen trophischen Ebenen; enge Bindung von phyto- und zoophagen Arten an Nahrungspflanzen und -habitat
- Geringes Migrationspotenzial der meisten Arten viele Kleinflächenbesiedler mit hoher räumlicher Sensitivität; durch kleinräumige Raumnutzung sind „parzellenscharfe“ Aussagen möglich
- Gut biologisch-ökologischer Kenntnisstand zu den meisten Arten
Aufgrund der hoch diversen ökologischen Einnischung ist die Verwendung unterschiedlicher ökologischer Gilden in Beschreibungs- und Bewertungsverfahren besonders geeignet

Homöozonität: Larven leben meist im selben Lebensraum wie Adulte (gilt eingeschränkt für Wasserwanzen)

Dominierend in Grünland- und Ruderalstandorten und an manchen Sonderstandorten (z. B. Binnenland-Salzstandorte)

Artenreichtum bei überschaubarer Individuenzahl ermöglicht eine gute Aussagenkraft bei vergleichsweise geringem Erhebungsaufwand

Gute Erfassbarkeit sowie Reproduzierbarkeit der Erfassungsmethoden

Stabile taxonomische und systematische Verhältnisse

Derzeit bestehende Defizite

- Kein aktuelles deutschsprachiges Bestimmungswerk
- z. T. aufwändig präparier- und determinierbar
- viele Arten klein, mit versteckter Lebensweise und somit schwer auffindbar
- notwendiger Einsatz kombinierter Fangmethoden für eine repräsentative Erfassung
- regional stark divergierender faunistischer Erforschungsstand; Checklisten und Rote Listen liegen nur teilweise vor, bedingt durch die relativ geringe Anzahl an Bearbeitern
- in wenigen Artengruppen unzureichende biologisch-ökologische Kenntnisse
- einige Nahrungsspezialisten treten nur in geringen Abundanzen auf; Gefahr von schwer deutbaren „Zufallsfunden"
- eingeschränkte Verwendung in hochalpinen Lebensräumen aufgrund der Artenarmut ab der Subalpinstufe

6 Zusammenfassung

7 Literatur

ACHTZIGER, R. (1997): Organization Patterns in a Tritrophic Plant-Insect System: Hemipteran Communities in
Hedges and Forest Margins. - Ecological Studies 130, 277-297.

GRIMM, D. (1994): Faunistische und ökologische Untersu-

Verbreitung der Grundwanze Aphelocheirus aestivalis FABRICIUS, 1798 in Deutschland. – HETEROPTERON, Heft 19, 7.

MELBER, A., & SCHMIDT, L. (2002): Der Einfluss von kon-

RIEGER, C. (1986): Vorschlag für eine Rote Liste der Wanzen

Simion, H. et al. (in Vorb.): Rote Liste der Wanzen (Heteroptera) Deutschlands.

ZWOLFER, H., BAUER, G., HEUSINGER, G., & STECHMANN, D.

Anschriften der Verfasser:
Dr. ROLAND ACHTZIGER, TU Bergakademie Freiberg, Institut für Biowissenschaften und Interdisziplinäres Ökologisches Zentrum, AG Biologie/Ökologie, Leipziger Straße 29, D-09599 Freiberg
E-Mail: roland.achtziger@ioez.tu-freiberg.de
THOMAS FRIESS, ÖKOTEAM – Institut für Faunistik und Tierökologie, Bergmannsasse 22, A-8010 Graz,
E-Mail: friess@oekoteam.at
Dr. WOLFGANG RABITSCH, Umweltbundesamt, Abt. Naturschutz, Spittelauer Lände 5, A-1090 Wien,
E-Mail: wolfgang.rabitsch@umweltbundesamt.at
und Department für Evolutionsbiologie, Fakultät für Lebenswissenschaften der Universität Wien, Althanstrasse 14, A-1090 Wien
E-Mail: wolfgang.rabitsch@univie.ac.at